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A substructure approach with free-free interface condition is formulated to investigate the
power flow characteristics of an L-shaped plate. This is achieved by complementing the
normal dynamic equations with geometric compatibility equations allowing the assessment
of power flow dynamic characteristics applied to and excited within the system. The
displacement contribution of the external and boundary coupling forces is deduced,
permitting determination of the power flow between the interfaces of substructures. A power
flow density vector is defined and the corresponding power flow lines illustrate the flow of
power in the plate. Numerical examples demonstrate the applicability of the method and
detailed configurations display the power flow characteristics associated with L-shaped
plates. The proposed method can calculate the higher modes easily and efficiently to ensure
convergence of solution as well as readily taking into account variations in substructure
damping.

© 2002 Elsevier Science Ltd.

1. INTRODUCTION

In the low-frequency range, the dynamic behaviour of a structure is normally derived
through deterministic methods such as the finite element method (FEM). In the
high-frequency range where high modal densities are experienced, the response of the
system is sensitive to small details of construction, properties and boundary conditions,
once the wavelength is comparable to the dimensions of the details which are not always
known with sufficient accuracy. Energy-based approaches such as a statistical energy
analysis (SEA) [1] and/or a power flow analysis (PFA) are therefore adopted. The SEA
approach provides only the global space-averaged information of the field variables with
the loss of detailed knowledge of the local distribution of the variables. In contrast, the PFA
approach is applicable over all frequency ranges and the parameters of power flow and
mobility may be expressed as an aggregate of modal functions to retain the resonant
behaviour of the individual and global structures at low modal density. If it is assumed that
all phase effects may be neglected at high modal density, the mobilities or vibrational energy
can be described in a similar form to those obtained by SEA [2, 3].

The fundamental concepts of power flow analysis, as discussed and described by Goyder
and White [4-6], use the rate of energy flow to characterize the dynamic response of
vibrating systems. Several PFA approaches have been presented which combine the
theoretical solution of individual structural elements. These include the mobility approach
applied to an L-shaped plate by Cuschieri [7], the direct dynamic stiffness method in
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a general frame of reference by Langley [8], the travelling and scattering wave approach to
a beam frame by Miller and Flotow [9], Horner and White [10], Beale and Accorsi [11],
the progressive approaches to coupled systems by Xiong et al. [12], the substructure
receptance approach in an indeterminate beam system by Wang et al. [13], and in two
coupled rectangular plates by Farag and Pan [14], Beshara and Keane [15]. The general
objective of these studies [ 7-15] is to assess the total power flow across the coupling edges
and joints of the subsystems.

A power flow finite element method was proposed by Nefske and Sung [16] and
investigated by Wohlever and Bernhard [17]. This method is based on a heat conduction
analogy with mechanical power flow and the latter authors showed that this analogy is only
approximately true for rods and beams.

Applications of FEA to energy flow modelling are described by Simmons [ 18], Stimpson
and Lalor [19], Steel and Craik [20], Fredo [21] and Mace and Shorter [22]. These
authors express the response of a finite element model in terms of an energy flow through
a global finite element analysis performed on a global system. Shankar and Keane [23, 24]
develop an alternative local FEA method using a receptance approach in which the
response of each subsystem is described by a Green function to analyze energy flow for both
simple and complex models. These FEA studies focus on the relation between FEA and
SEA by calculating the kinetic energy of the system.

Hambric [25] and Gavric and Pavic [26] use FEA to calculate structural intensities. It is
advantageous to use FEA models in a power flow analysis and in structural intensity
calculations because they can be conveniently applied to complex structures subject to
boundary conditions. However, in general, because the structural intensity prediction
requires an accurate description of various spatial derivatives and it is necessary to admit
a large number of modes into the analysis to ensure convergence of solution, a numerical
approach adopting modal superposition encounters difficulties due to the computational
effort required. To ease this problem, Xing and Price [27] developed the concept of an
energy flow density vector which uniquely defines the energy transmission between one part
of a system and another. The analysis of structural intensity or energy flow density vector
identifies the magnitude and direction of the power at any location in a structure and allows
the determination of dominant paths of energy flow. An understanding of the mechanisms
and paths of energy transmission flowing from a vibration source to other parts of
a structure has been recognized as an important tool to control vibration [28].

This paper examines the power flowing in an L-shaped plate system excited by an
external force (see, Figure 1). A theoretical modal substructure approach is used to evaluate
the vibrational power flow between plates and the power flow density (or structural
intensity) in two plates. Hence, natural frequencies and principal mode shapes of
a rectangular plate are first determined and then a receptance function derived for the
coupled plate system. According to thin plate theory (see, reference [29]), the assumptions
of small deflections and small slopes of the shapes lead to an equation governing the
bending vibration which is uncoupled to the in-plane vibration. When two or more plates
are coupled at a non-zero angle, the bending vibration of one plate couples with the in-plane
vibration of the other even when only a lateral load is applied. The receptance function of
the plate structure used herein therefore neglects the coupling between bending and in-plane
vibrations but they are coupled at the junction of the two plates. The aim of this study is to
examine as to how power flows within and across the plates to determine the power flow
characteristics in coupled plate structures. The main advantage of this approach is an
ability to calculate the higher modes easily and efficiently as well as readily taking into
account variations in substructure damping but it has a limitation, namely, the receptance
function of the substructure can only be achieved analytically.
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Figure 1. Schematic illustration of an L-shaped plate system.

2. SUBSTRUCTURE APPROACH TO AN L-SHAPED PLATE

2.1. THE COUPLING OF SUBSYSTEMS

The L-shaped plate system under investigation is illustrated in Figure 1. It is assumed
that simply supported boundary conditions apply on the plate edges except on the forcing
or coupling edge. This total system can be separated into two subsystems with each
subsystem under examination as shown in Figure 2. That is, a rectangular plate with simply
supported boundary conditions applied to three edges of the plate with the coupling edge
(y = b) assumed free.

Two kinds of forces act on the plate. One is the external excitation force at position (x,, y.)
whereas the other is the internal distributed coupling force acting at the coupling edge, see
Figure 2. The whole system is coupled at the coupling edge by the distributed internal forces
of bending moment M,,, transverse shear force Q, and in-plane longitudinal force N,, along
the free edge of each subsystem. The internal force vector [f°]=[N,,, Q,, M,,]" and
relative displacement vector [U] = [w,, w,0,]" at the coupling edge in the local
co-ordinate axis reference system (X, Y, Z) are related to those in the global co-ordinate
(X0, Yo, Zo) by an orthogonal transformation matrix [ T] (see, for example, reference [30])
expressed as

[fol = [TIf],  [Uo]=[TI[U], (1)
where
cosa —sino 0
[T]=|sinaz cosa O | )

0 0 1
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Figure 2. Schematic illustration of a subsystem in the local co-ordinate system.

The coupling relationship between two connected plates is expressed by their force
balance and geometric compatible conditions at the coupling edge in the global co-ordinate
system. For example, for the jth and kth plates at a coupling edge shown in Figure 2, the
respective coupling relationships are given by force balance and geometrically compatible
conditions as

[T;]LU5] = [T JLUi ], )
[T5] + [Tedfi]1 =0, j k=12 # k )

The displacement vectors at the coupling edges can be further expressed in terms of
components excited by an external excitation vector [f°] and an internal coupling force
vector [f¢]. For example, the displacement vector on the jth plate is given by

[U5]1 = [MbF[f57 ] + [MD51[7], j=1,2 )
Equation (4) can be rewritten as

[fi]1= — [T [T, (6)

Substituting equations (5, 6) into equation (3), the coupling forces are expressed in the
form

[f;1 = (CTIIMBILT] ™ 'IT,] + [T,IMB5D) " {I T IIMbI] — [T,JIMBSILAT 1} (7)

It therefore follows that the response of the plate system can be determined after the
solution of the receptance function of a single rectangular plate. If it is assumed that the
coupling edge between the two plates is simply supported, the coupling relationship
simplifies to

ij = exks Myyj + Myyk = 0 (8)

This formula is independent of the coupling angle «. The coupling relation presented here is
derived in a general manner, so it can be applied to any coupling angle o and to a more
complex joined plate structure.
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2.2. BENDING VIBRATION OF A SUBSYSTEM

As shown in Figure 2, each subsystem is treated as an idealized system consisting of
a single rectangular uniform plate simply supported at three edges with a free edge at y = b.
Its structural damping properties are represented by a linear Voigt viscoelastic model with
hysteretic damping or loss factor #. A harmonic external exciting force is applied at (x,, y,)
and internal distributed coupling forces act on the free edge of the plate.

Under the assumptions of thin plate theory (see, for example, reference [29]), the
differential equation describing plate bending vibration is expressed as

phiv(x, y, ) + DV w(x, y, 1) = f(x, ¥, ) 8(x — X 8(y — ve), O
where
D = ER*/12(1 — u?), (10
with stress—displacement relations
M, = — D(0*w/0x* + ud*w/oy?), M,, = — D(0*w/dy* + p 0*w/ox?),
M., =M, = — D(1 — p) 0*w/dxdy, (11)
0. = — D(@*w/ox> + 03w/0xdy?), 0, = — D(@*w/dy* + 0*w/dx?0y). (12)

The solutions of natural frequencies and principal mode shapes of a rectangular plate
under different boundary conditions are given by Leissa [29] and Gorman [31] based on
a Levy-type solution. A finite element analysis is also a very useful technique to derive the
natural frequencies and principal mode shapes of a rectangular plate as discussed in
references [23, 24].

For a rectangular plate simply supported at three edges and free at the fourth edge, the
eigenvalue equation and relative principal mode shapes are given by [31]

207 + 2 = Wer’n) B — ugr’n?) sinh B, cos 7,
= BB — 2 — we*r?*n*)y? + pd?r’n?) cosh B, sin y,, (13a)

Wy F +ptrin?ysing, o By . rax
h = 13b
T ETTY A N R (130)

(pr(x’ y) = |:Sin —-— +
for A, >rn,r=1,2,3,...,0r
Wor — Q2 — wo*r*n®)B; — ug®r*n?) sinh f, cosh y,
= BB — 2 — w*r*n®)y7 — ug*r’n’) cosh B, sinh y,, (14a)

. . v2 — ud*r*n?) sinh y, . . . TTX
Qlx,y) = [smh be — (([';rz — Zﬁzrzﬂzi sinh Zr sinh ﬁby} sin —, (14b)
for 1, <rm, where y, = ¢ /|22 — (rn)?|, B, = P/ i2 + (rm)*.

For any r (=1, 2, 3,...), a solution of the natural frequency o,, = (45,/a®) \/D/p
(p=1,2,3,...)1s obtained numerically from eigenvalue equation (13a) or (14a). Its relative
principal mode shape ¢,,(x, y) is determined using equation (13b) or (14b).

According to a theorem given by Rayleigh [32], any distortion of the plate may be
expressed as an aggregate of distortions in its principal modes. That is,

n

W(X, Vs [) = Z Z q)rp(xs .V)Prp(t)' (15)

r=1p=1



632 Z. H. WANG ET AL.

The principal co-ordinate of the plate under examination (see, for example, reference
[33]) is given by

f(xe, YO)PriXer o) + JoLQy(x, b)(ﬂrp(x b) + My, b)pr,(x, b dx ;o

P.(t) = 16
p( ) rp[wrp - (H + lwrpn] ( )
Thus, the displacement of the rectangular plate is expressed as
w(x, y, 1)
_ Z i oulx, 9) f (Xes Vo) Prpl(Xes Vo) + fOEtQay)x b) er(i 11;)) + M,y (x, D)oy, BT dx o
r=1p=1 rp rp rpn]
(17)
with the rotation angles,
owx, y, 1) ¢ 0¢rp(X, ¥)
0(x, p,0) = ————= — 2 Py(t), (18)
6_)) rgl pgl ay g
owlx, y, 1) ¢ 0Prp(x, ¥)
ey(xa Y, t) A z Z — Prp(t)' (19)

0x 0x

Equations (17-19) describe the relationship between the general displacement responses
U(x, y, t) and excitations. That is, the receptance function which, in matrix form, can be
written as

{UCx, y, 0} = [MD(x, y, Xos y)HECxes y)E™ '} + MBI, y, xe, DI (xe, D)™}, (20)

It is noted that all the receptance matrixes and internal forces f(x,, b) have complex value
elements due to the influence of damping.

2.3. IN-PLANE VIBRATION OF A THIN RECTANGULAR PLATE

The basic underlying assumption of in-plane vibration of a rectangular plate lies in the
fact that a small deflection and small slope in the deformed shape leads to a bending
vibration in the plate which is uncoupled from the in-plane vibration. The differential
equations describing in-plane vibration of a plate (see, for example, reference [29]) under
excitation force vector [f,, f,] €' at position (x,, y.) are given by

% P ey ot = — B xsr—ve @)
L ax 6 2 L axay x ph X Xe y .Ve:

0w o*w
CL52+C2OaWy+(CL+C2)aa +o’w ——5(x X))oy —yo)  (22)

Theoretical solutions of equations (21, 22) are difficult to derive analytically because these
two equations are coupled. Numerical methods, for example FEA, can be used to obtain
accurate solutions for the in-plane vibration of the plate under different boundary
conditions (see, reference [34]). Langley [8], Farag and Pan [14] resort to an approximate
method for simple engineering applications. They assume neglect of the coupling between
displacement responses w, and w, resulting in the absence of the third term on the left hand
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side of equations (21, 22). The coupling between w, and w, is due to the Poisson effects and
shear waves accompanying the longitudinal waves. The main emphasis of the present study
is to assess the coupling between longitudinal and flexural vibrations of the plates at the
coupling edge, so it is reasonable to neglect the influences of the Poisson effects and shear
waves in the manner of Farag and Pan [14]. When the plate is assumed clamped at x = 0,
x =a, y =0 and free at y = b, the solution of equation (22) takes the form

n m Cormx . )
wix, » )~ Y Y A,,sin % sin p2_7;)y e, (23)
r=1p=1,3,5,...

The governing equation for in-plane vibration becomes

n m 2 »
2 (D7 2 TTN o o TTEX . PTLY
rgl p=1.3,.., {CL<2b> + CT<a> w }Sln . sin 5 A,p
f,
= ﬁ 6(X — XE)S(y — ye) (24)

and after using the orthogonal property of the assumed principal mode shapes,

4f, sin (rnx,./a) sin pry./2b
Arp = 2 2 2 2 2
pabh[Ci(rnja)” + C3(pn/2b)” — w?]

(25)

forr=1,2,3,...,.nand p=1,3,5,...,m.

The displacement response w, in the x direction has the same form as described in
equations (23, 25). These solutions can be expressed in a receptance matrix form similar to
equation (20).

The internal forces per unit width caused by in-plane vibration are given by

N = — Eh 8wx+ ow, N = — Eh 6wy+ 0w,
Tl — 2\ ox “ay ’ W — w2\ oy Kox )

—Eh [(ow, oOw
N, =N,, = X 2
= N 21 ~I—M)<0y * ax> (26)

and are determined knowing w, and w,.

3. POWER FLOW CHARACTERISTICS IN AN L-SHAPED PLATE

3.1. POWER FLOW DENSITY VECTOR

The instantaneous power flow density vector in a continuum introduced by Xing and
Price [27] is defined by the dot product of the velocity vector v; and stress tensor 6 given
by

Qk = — Re{vj} Re{o’jk}, j, k = 1, 2, 3, (27)

where a standard Cartesian tensor notation and a summation convention are used. This
power flow density vector specifies the energy transmitted from one part of a dynamic
system to another per unit time and allows the determination of power flow at each
point in or on the continuum in any direction. Its time-averaged quantity over a period of
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Figure 3. Direction convention of force and displacement components on a plate element.

excitation T is

1 T
{qx) = T f qpdt = — 3 Re{oyvf}. (28)

0

The time-averaged power flow density vector{q,» in equation (28) is equivalent to the
structural intensity parameter described elsewhere [25, 26] and is similar to an acoustic
intensity parameter in a fluid domain being the product of pressure and the in-phase
component of fluid particle velocity (see, for example, reference [35]).

The instantaneous power flow density vector in a thin plate (see, for example, reference
[27]) is defined as

qr = — Re{v} Re{Q,} + Re{v ;} Re{M;;} — Re{w;} Re{N}, (29)

where j = 1, 2 = k. The sign of the second term on the right-hand side of equation (29) is
dependent on the direction definitions of §; and M ;.. They are defined in Figure 3 based on
the sign convention of elasticity theory (see, for example, reference [30]).

The time-averaged power flow density vector over a period of excitation in the thin plate
is

gy =—3 Re{Quw* — Myjv¥ + Nyjwi}. (30)

When the plate is simply supported at all edges and only transverse exciting forces exist,
the component of in-plane vibration in equations (29, 30),i.e. Re{w;} Re{N;} or Re{N;wj},
is equal to zero.

The instantaneous power flow density vector in the coupling edge is only in the
y direction (see, Figure 2) and can be expressed as

¢S = — Re{v} Re{Q,} + Re{0,) Re{M,,} + Re{0,} Re{M,,}
— Re{w,} Re{N,,} — Re{w,} Re{N,,}, (31)
with a time-averaged quantity,

g8y = — LRe{Qu* + Nk + Ny — M08 — M, 0%, (32)
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Figure 4. Results of time-averaged input power and transmitted power flows (excitation at the centre of plate I):
+ , input power (FEA); A, transmitted power (FEA); —-—, input power; —, transmitted power.
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Figure 5. Results of time-averaged input power and transmitted power flows (excitation at x, = 0-33 m,
Ve = 0-125m of plate I): + , input power (FEA); A, transmitted power (FEA); - - -, input power; —, transmitted
power.

If the boundary condition on the coupling edge in Figure 2 is also simply supported,
equations (31, 32) become

g5 = Re{0,) Re{M,,}),  {gi> =% Re{M,,0%). (33, 34)
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Figure 6. Time-averaged power flow density vector in two plates, f= 77-7 Hz. “ + ” indicates the excitation
position.

The total transmitted power in a coupling edge is given by the integral of the transmitted
power flow density along the length of the coupling edge. That is,

Girans = f qydx (35)
0

with corresponding time-averaged quantity,

(s = J (G dx. (36)

It is convenient to determine the power flow at the coupling edge using a substructure
receptance approach because the solution of the coupling force [fj] in the coupling
relationship equations (6, 7) and the receptance function expressed in equation (20) is simple
and in the same local co-ordinate axis system.

If an external exciting force |f|e’” is applied at position (x,, y.) and the velocity
response at this position is v.e'®" = |v |e" "¢, the input power from this excitation is given
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Figure 7. Time-averaged power flow density vector in two plates, f

position.

by

(37)

qin(t) = Re{|f|e"} Re{v,e''} = 5 [f] |v,| * [cos ¢, + coswt + ¢,)]

with corresponding time-averaged quantity,

(38)

{qilt)y =% If] v cos @..

3.2. CALCULATION EXAMPLE

For illustrative purposes, one assumes that the L-shaped plate system shown in Figure 1

is defined by the data set: p = 2710 kg/m?, E = 72 GPa, n = 0:01, u

03;a=b=05m,

0-00635 m.
Two coupling edge conditions were examined. The first assumes that simply supported

boundary conditions apply at all edges of each plate including the coupling edge. This
system was originally examined by Cuschieri [7] to assess the power flow transmitted

c=10m, h
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Figure 8. Time-averaged power flow density vector in two plates, /= 201-4 Hz. “ + ” indicates the excitation

position.

between two plates adopting a mobility function approach. The other assumes that simply
supported boundary conditions apply at three edges of each plate but the plates are rigidly
connected at the coupling edge. More complex boundary conditions may be adopted, e.g.,
fixed or free at some edges of a plate, etc., which complicates the analysis without
contributing significant additional insights into the power flow mechanism occurring in the

coupled plate system.

3.2.1. Simply supported coupling edge

Figures 4 and 5 illustrate the variation of the time-averaged input power and transmitted
power flows with frequency to an amplitude loading applied at different positions. Figure 4
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Figure 9. Time-averaged power flow density vector in two plates, f = 263-8 Hz. “ + ” indicates the excitation
position.

shows the results of an excitation at the centre of plate I, whereas Figure 5 displays the
predictions caused by a loading at position (0-33 m, 0-125 m) on plate I. The calculated
time-averaged transmitted power flow values at the coupling edge demonstrate the same
trends and magnitudes as those presented by Cuschieri [ 7]. The receiving plate, i.e., plate II
in Figure 2 is not connected to any other substructure except the source plate (plate I), and
thus the transmitted time-averaged power in Figures 4 and 5 equals the rate of energy
dissipation due to the internal loss factor. The total energy dissipation of the system in
a period is equal to the time averaged input power in Figures 4 and 5.

Because receptance functions of many practical engineering structures cannot be
determined theoretically, the results derived by an FEA substructure receptance approach
are also included in Figures 4 and 5. The FEA plate model has the same structural
characteristics as the original substructure and contains 527 nodes and 480 plate-shell
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Figure 10. Shapes of instantaneous bending moment, angular velocity and transmitted power flow along the
coupling edge of plate I at a frequency of 124-1 Hz: —--, angular velocity; —---, bending moment; ——,
instantaneous power.

elements. Ninety natural frequencies and principal mode shapes of a plate were extracted
using FEA package ANSYS spanning the frequency range up to 4150 Hz. It is observed that
only small differences exist between the theoretical substructure predictions and those
evaluated by the FEA approach after 500 Hz as illustrated in Figures 4 and 5. This is
because only a small number of principal mode shapes are used in the FEA substructure
approach (see, for example, reference [36]). At approximately 200 Hz in Figure 5, there
exists a small peak in the analytical approach which does not appear in the FEA solution. In
the analytical model, the excitation is positioned at (0-33, 0-125) which because of the
automatic modelling process of ANSYS approximates to (0-3333, 0-125). This latter position
falls on the node line of the mode with a natural frequency of about 200 Hz. The analytical
calculation was repeated at (0-3333, 0-125) and these results showed similar trends to those
derived numerically.

In the following presentation of spatial distributions of time-averaged power flow density
vectors, Figures 6-9 relate to a unit amplitude exciting force applied at position
X, =075m, y,=0125m on plate I and this position of excitation is indicated by the
symbol “ + ” in these figures. For clarity of presentation, the modulus of time-averaged
power flow density vectors in Figures 6-9 are defined as

1<, YOI = [Kq(e, 17 = (I, VI + lgy(x, 01D (39)

Figure 6 illustrates the distribution of the time-averaged power flow density vector at
a frequency of 77-7 Hz. This corresponds to the first natural frequency of the system with
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Figure 11. Instantaneous power flow density vector at f= 77-7 Hz, t = 0. “ + ” indicates the excitation position.

one bending wave in both x and y directions in each plate. Figure 7 shows the
corresponding vector distribution at a frequency of 124-1 Hz. This coincides with the third
natural frequency of the system and is associated with two bending waves in the x direction
and one bending wave in the y direction of each plate. Figure 8 shows findings at
a frequency of 201-4 Hz. These correspond to the fifth natural frequency of the system with
three bending waves in the x direction and one bending wave in the y direction of each plate.
Figure 9 shows results at a frequency of 263-8 Hz. These relate to the seventh natural
frequency of the system with one bending wave occurring in the x direction and two
bending waves in the y direction.

An L-shaped plate can be separated into two rectangular plates with a time- and
frequency-dependent distributed moment excitation applied to the coupling edge of the two
plates. This moment excitation together with the angular deformation represent the energy
exchange between the two plates. As shown in Figures 7-9, the energy does not always flow
simply from source plate (plate I) to receiver plate (plate II), because in some parts along the
coupling edge, energy flows from receiver to source plate. The direction of time-averaged
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Figure 12. Instantaneous power flow density vector at f= 77-7Hz, t = T/8. “ 4+ ” indicates the excitation

position.

power flow is dependent on the phase angle between internal force and velocity response.
This is demonstrated in Figure 10 through illustration of the shapes of instantaneous
bending moment, angular velocity and power flow occurring along the coupling edge of
plate I at a frequency of 124-1 Hz. At any position on the coupling edge, when the phase
angle between internal bending moment and angular velocity is less than 90°, the sign of the
instantaneous power flow is negative and the direction of the rate of energy flow in a period
is in a direction indicating energy absorption. Alternatively, if the phase angle is between 90
and 180°, the sign of the instantaneous power flow is positive and the direction of the rate of
energy flow in a period is in a direction indicating an output of energy. The total power
flowing in and out of the coupling edge remains balanced regardless of the number of plates
combining at the coupling edge when the coupling is conservative. This is a mechanism
similar to the one observed in Kirchhoff’s law of electric current in that the summation of
current flow into and out of a connection point is equal to zero.

Power flow in an L-shaped plate under a single force excitation is very complex and
frequency dependent. The power flow density at a position near to the source is not
necessarily always larger than its density at positions further away from the source. Power
flows from the excitation source and usually ends at a boundary but there exists the
possibility that the time-averaged power flow density is equal to zero at positions in the
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Figure 13. Instantaneous power flow density vector at f= 777Hz, t = T/4. “ 4+ ” indicates the excitation

position.

plate and a circulation- or vortex-type flow exists in the vicinity of this position. Such flows
are illustrated in Figures 7-9.

One difficulty encountered in general modal superposition is the convergence of the
summation process. Compared to the displacement response, convergence of the calculated
internal force (moment and shear force) is poor, especially for the shear force, and therefore
a large number of modes are used. The power flow density vector in the plate contains
components of both bending moment and shear force, so its convergence is also poor and
has the same level of difficulty of calculation as in the shear force case. In the theoretical
substructure approach adopted here, such difficulties and effort of computation do not arise
because modes and internal forces have formulated expressions. The highest eigenfrequency
admitted in the present calculation for a suitable accuracy of convergence of solution in the
analysis is at least 500 kHz.

Figures 11-14 illustrate the instantaneous power flow density vector at four different time
instants of the first natural frequency at 77-7 Hz. The instantaneous power flow displays the
characteristics of energy exchange between kinetic and potential energies. At instants t = 0
and T/8 (Figures 11 and 12), both plates release energy and it is usual for power to flow from
the peak value position of a modal shape to a boundary (i.e., the zero position of a modal
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Figure 14. Instantaneous power flow density vector at f= 77-7Hz, t = 3T/8. “ + ” indicates the excitation

position.

shape). This peak value position acts similar to a power source. At instants t = T//4 and
3T/8 (Figures 13 and 14), both plates absorb energy and there is no obvious power source.
Power flows from boundary to the peak value position of the modal shape and this latter
position behaves similar to a sink.

3.2.2. Rigidly connected coupling edge

Figures 15 and 16 illustrate the variation of the time-averaged transmitted power flows
with frequency to different assumed boundary conditions at the coupling edge. An
excitation is applied at the centre of plate I and results are presented over the frequency
range of 0-1500 Hz (Figure 15) and 2000-4000 Hz (Figure 16). The conditions at the
coupling edge are: simply supported (i.e., the same as considered in Figures 4 and 5) and
rigidly connected with plates at 45, 90, 135 and 165° to one another. Below 600 Hz, the
results derived for all conditions are almost identical. The right angle set of predictions is
similar to the simply supported case below the frequency of 4000 Hz which is about 0-7
times the value of the first natural frequency of an in-plane vibration. This implies that the
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simply supported case assumption at the right angle coupling edge is valid below
a frequency of 0-7 times the value of the first natural frequency of in-plane vibration. The
influence of in-plane vibration increases as the angle between the two plates deviates from
a right angle.

4. CONCLUSION

Based on the concept of the power flow density vector and its time-averaged value (or
structural intensity) in a continuum, a dynamic substructure approach is used to derive the
power flow density vector of an L-shaped plate system by combining the force balance and
geometrically compatible conditions at the coupled edge. The power flow characteristics of
the system are examined numerically. The proposed method can calculate the higher modes
easily and efficiently to ensure convergence of solution as well as readily taking into account
variations in substructure damping.

On the coupling edge of the L-shaped plate, energy does not always flow from source
(plate I) to receiver (plate II) for in some portion of the coupling edge, energy flows from
receiver to source plate. The direction of time-averaged power flow is dependent on the
phase angle between internal force and velocity response. At positions on the coupling edge
where the phase angle between internal bending moment and angular velocity is < 90°, the
plate absorbs energy. Otherwise, the plate transmits energy when the phase angle is > 90°.

The time-averaged power flow density value at positions near the source is not
necessarily larger than its value in positions far from the source. Time-averaged power
usually flows from the excitation source and ends at a boundary but there is every
likelihood that the time-averaged power flow density is equal to zero at positions on the
plate and a circulation- or vortex-like structure may exist around this zero density power
flow position. The instantaneous power flow describes the characteristics of energy
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exchange between kinetic and potential energy. The peak value position of the modal shape
is similar to a power source when the system releases energy and a sink when the system
absorbs energy.

In the future, it is planned to complement this study by measuring power flows and
structural intensities in simple structures. This investigation provides the mechanisms to

measure the relevant parameters.
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APPENDIX A: NOMENCLATURE

b length and width of rectangular plate

Cr longitudinal wave speed
Cr transverse (in-plane) shear wave speed
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D
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plate flexural rigidity

Young’s modulus

general expression of exciting forces

external excitation and internal coupling force matrixes on the jth plate respectively
thickness of plate

= -1

generalized modal mass

, internal bending moments and twisting moment per unit length

receptance functions between displacements at coupling edges and external
excitations or internal coupling forces of the jth plate
mode number used in modal analysis

internal in-plane longitudinal force

principal co-ordinate

transverse shearing forces per unit length

general expression for power flow

general expression for time-averaged power flow

a period of excitation

orthogonal transformation matrix between global and local co-ordinate systems
displacement matrix at the coupling edge of plate j
general expression for transverse velocity

general expression for displacement

spatial co-ordinates

the angle between global and local co-ordinate systems
Dirac delta function

damping loss factor

eigenvalue (= w,a>./p / D)

general expression for phase angle

principal mode shape

plate aspect ratio

the Poisson ratio

general expression for slope angle

mass density

stress tensor

exciting frequency

natural frequency

transpose of a matrix

an inverse matrix

conjugate of a complex variable
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